
PPU Instruction Set

Table 1: Version control

Version Updated Description

1.2 Yoav
6/24/2005

First Draft

1.3 Yoav
7/8/2005

(1) Small change in the AGU instruction
move the update flag from the control reg-
ister into the instruction.

(2) Add operand to the shuffle network
instructions

1.4 Yoav
8/9/2005

(1) Add immediate trf instruction
(2) Add Vector move instruction

1.5 Yoav
8/18/2005

(1) integrate the ALU mode into the
instruction
(2) Permutation supported only as a dis-
tinct instruction
(3) Add select register
(4) Update AGU

1.Instruction Operation and Execution notations

Table 2: Symbol Definitions

Symbol Meaning

Vd Vector destination register

Sd Scalar destination register

Ad Address destination register

Pd Predication register destination

Vn Vector source 1

Sn Scalar source 1

An Address source 1

(An.s) address pointer 1 points to scalara

(An.v) address pointer 1 points to vector

Pn Predication register source 1

PSR Scalar status bit

Vm.s address pointer 2 points to scalar

Vm.v address pointer 2 points to vector

Sm Scalar source 2

Am AGU source 2

(Am.s) address pointer 2 points to scalar

(Am.v) address pointer 2 points to vector

Pm Predication register source 2

#imm Immediate value

Rd Vd or Sd

Rn Vn or Sn

Rm Vm or Sm or imm

L Loop counter

+ Increment AGU as define in the AGU
control register

2. Instruction Partition

The PPU supports a concurrent execution of two units, the address generator unit (AGU) and the
Data units (DALU). This enable to execute on the data path while reading from the memory.
Both AGU and DALU can be either scalar, vector or vector scalar cross instruction.

- Decrement AGU as define in the AGU
control register

a. The pointer can be to the Scalar memory or to Vector mem-
ory depends on the address

Table 3: Instruction packing

Part A Part B

Data Instruction AGU Instruction

Table 2: Symbol Definitions

Symbol Meaning

Table 4: Function unit partition

DALU AGU

Arithmetic Logic Data
Control

Vector
Scalar

Vector
Permutation move

nop
neg
add
addu
addc
sub
subu
subc
mul
mulu
mulc
mull
mullu
mullc
mac *
macu *
macc *

div (pseudo)
mod(pseudo)

and
or
xor
not
lsl
lsr
asr
not

cmpne
cmpeq
cmpgt
cmplt
cmple
bt
bf
jmp
select
trf
trfq
trfs

dot
min
max

vcs
shup
shupw
shdn
shdnw
hfup
hfdn
bfly
shrk
expd

nop
move.b
move.w
move.l
move.2l
move.q
move.v

3. Arithmetic and Logic instructions

3.0 The Arithmetic and Logic commands
The arithmetic/logic instruction includes a predication annotation, two operands and destination.
CMD <perd> dst,src1,src2
The PPU supports three types of operands: Vector to Vector, Vector and Scalar to Vector and Sca-

lar to Scalar.

1. Vd,Vm,Vn - Vector to Vector operation

2. Vd,Vm,Sn/Imm - Scalar or Immediate to Vector operation
3. Sd,Sm,Sn - Scalar to Scalar

3.1 Carry
In order to support precision higher than 8bit, both the ALU and the Multiplier include register to
hold the carry and logic to add the carry to the input operands. The following table summarize this
operation.

Table 5: Carry operation on the Multiplier

Instruction Carry L Carry H Out

add/sub Overflow N/A LSB

addc/subc Overflow N/A LSB+L

mul - MSB LSB

mulc LSB+H MSB LSB+H

mull - - LSB

mullc - MSB+H LSB+L

OP

Vm

Vn e0

OP

e1

OP

e31

e0 e1 e31

Vd

V m

Vd

O P

e0

O P

e1

O P

e31

Sn

3.2 Overflow/Saturation
The arithmetic instruction can be executed in two mode (Overflow) and (Saturation).
The execution mode controlled by the MODE register.
3.3 Predication

The predication option enable to control the operation with one of the four bit vectors p0,p1,p2,p3

called predicators and operates as follow:

<pred_cond,pn>

(1) <true,Pn> - Execute on true condition

(2) <false,Pn> - Execute on false condition

(3) <value> - Execute on (p3:p0 == Value)

(4) <inv:Pn Pm> - The signed of the operands defined by the predicator

3.4 Instruction list

Table 6: Arithmetic and Logic Instruction list

Symbol Name Operands flags

nop No operation - -

neg Negative Rd,Rn,Rm <pred>

add Add Rd,Rn,Rm <pred>

addc Add with carry Rd,Rn,Rm <pred>

addu Unsigned add Rd,Rn,Rm <pred>

sub Subtract Rd,Rn,Rm <pred>

subc Subtract with carry Rd,Rn,Rm <pred>

subu Unsigned subtract Rd,Rn,Rm <pred>

mul Multiply Rd,Rn,Rm <pred>

mulc Multiply with
carry

Rd,Rn,Rm <pred>

mulu Unsigned multipli-
cation

Rd,Rn,Rm <pred>

mull Multiply low Rd,Rn,Rm <pred>

mullc Multiply low with
carry

Rd,Rn,Rm <pred>

4. Data control

4.0 Compare commands
Compare two operands and write to predicator or status register.

4.1 Compare commands operands

The PPU supports three types of operands (1) compare vectors and update the predicator (2) com-

pare vector with scalar and update the predicator (3) Compare two scalar and update the PSR

1. Pd,Vm,Vn

2. Pd,Vm,Sn/Imm
3. Sm,Sn

4.2 Select
The select instruction select between two operands, according to the predicator

mullu Multiply low
unsigned

Rd,Rn,Rm <pred>

mac Multiply
and accumulate

Rd,Rn,Rm <pred>

div Divided Rd,Rn,Rm <pred>

mod Rd,Rn,Rm <pred>

and And Rd,Rn,Rm <pred>

or Or Rd,Rn,Rm <pred>

xor Xor Rd,Rn,Rm <pred>

not Not Rd,Rn,Rm <pred>

lsl Logic shift left Sd,Sm/IMM
Vd,Sm/IMM

<pred>

lsr Logic shift right Sd,Sm/IMM
Vd,Sm/IMM

<pred>

asl Arithmetic shift
left

Sd,Sm/IMM
Vd,Sm/IMM

<pred>

Table 6: Arithmetic and Logic Instruction list

Symbol Name Operands flags

4.3 Flow commands (bt,bf,jmp)
The flow instructions are only supported in the scalar unit

CMD <Lable/Sm>

4.4 Transfer instruction

The transfer instruction moves data between registers. The following transfer instruction are sup-
ported:

Table 7: Transfer instruction types

Instruction Description

trf Transfer data between registers

trfq Transfer data between Scalar and Vector using a queue.

trfs Transfer data between Scalar/Imm to special purpose register
specify by it address.

Table 8: Transfer Instructions operands

Operands Description

trf Vd,Vm Vector register to vector register transfer

trf Vd,Sm/Imm 8-LSB of scalar register duplicate and transfer to vector

trf Vd,Sm,Sn 8-LSB of scalar to a Vector element index by Sn

trf Vd,Pm Bit vector transfer to Vector

trf Sd,Sm/Imm Transfer a scalar or immediate to scalar

trf Sd,Vm,Sn/Imm Transfer an indexed element (Sn/Imm) for vector Vm to
scalar Sd.

trf Sd,Am Transfer an AGU register to Scalar

trf.l Sd,Pm Transfer low portion of the predicator to Scalar

trf.h Sd,Pm Transfer high portion of the predicator to Scalar

trf Pd,Sm:Sn Transfer two sequential registers to predicator

trf Pd,Vm Transfer a vector LSB into predicator

trf.l Pd,Vm Transfer 4LSB of vector to 4 predicators

trf.h Pd,Vm Transfer 4MSB of the vector to 4 predicators

trf Ad,Sm/Imm Transfer Scalar register or immediate to AGU register

trfq Vd,Sm:Sn Transfer Sm:Sn to queue after 8 transaction to the queue a
complete vector will be written to Vd

trfs SPR[#ADD],Sm/Imm
trfs Sm,SPR[#ADD]

Transfer a scalar register to a special purpose register
Transfer a special purpose register to a scalar

Table 9: Data control Instruction list

Symbol Name Operands

cmpne Compare not equal Pd,Vm,Vn

Pd,Vm,Sn/Imm
Sm,Sn

cmpeq Compare equal Pd,Vm,Vn

Pd,Vm,Sn/Imm
Sm,Sn

cmpgt Compare greater than Pd,Vm,Vn

Pd,Vm,Sn/Imm
Sm,Sn

cmplt Compare less then Pd,Vm,Vn

Pd,Vm,Sn/Imm
Sm,Sn

cmple Compare less equal Pd,Vm,Vn

Pd,Vm,Sn/Imm
Sm,Sn

bt Branch true Sd/IMM

bf Branch false Sd/IMM

jmp Jump Sd/IMM

Table 8: Transfer Instructions operands

Operands Description

5. Vector to Scalar
dot - Sum all vector elements with 16bit scalar and write the results to scalar
min - Calculate the min value and the min index of all vector elements and a scalar, put the results
in a scalar 8-LSB (Value) 8-MSB (Index)
max - Calculate the max value and index between all the vector elements and a scalar put the
value and the index is a scalar 8-LSB (Value) 8-MSB (Index)

select Select Rd,Rm,Rn

trf<.l,.h> Transfer Vd,Vm/Sm/Imm/Sm,Sn/Pm
Sd,Sm/Vm,Sn/Am/Pm
Pd,Sm:Sn,Vm,Pm
Ad,Sm/IMM

trfq Transfer to queue Vd,Sm:Sn

trfs Transfer to special pur-
pose register

SPR[#Add],Sm
Sd,SPR[#Add]

Table 10: Vector to Scalar Instruction list

Symbol Name Operands

dot Sum a vector and a scalar Sd,Vm,Sn

min Min and Min index of a
vector

Sd,Vm,Sn
Sd.l - Value
Sd.h - Index
Sn.l - Value
Sn.h - Index

max Max and Max index of a
vector

Sd,Vm,Sn
Sd.l - Value
Sd.h - Index
Sn.l - Value
Sn.h - Index

Table 9: Data control Instruction list

Symbol Name Operands

6. Permutations
The following table summarize the vector rotation for each of the permutation.

Table 11: Permutation operation

Name Operand supported Equation

vcs Vector compare select

shup Shift Up <Sm/Imm> Vd,Vm
Sm Value,Imm = {1,2}

V[0] = 0
V[n] = V[n-1] n > 0

shup1w Shift Up 1 and Wrap Vd,Vm,Sm,Sn V[0] = S0.S15
S0.S15 = V[31]
V[n] = V[n-1] n > 0

shdn Shift down <Sm/Imm> Vd,Vm
Sm Value,Imm = {1,2}

V[n] = V[n+1] n<31
V[31] = 0

shdn1w Shift down 1 and wrap Vd,Vm,Sm,Sn V[n] = V[n+1] n<31
V[31] = S0.S15
S0.S15 = V[0]

hfup Shift half up <Sm/Imm> Vd,Vm
Sm Value,Imm = {1,2,4,8,16}

hfdn Shift half down <Sm/Imm> Vd,Vm
Sm Value,Imm = {1,2,4,8,16}

bfly Butterfly <Sm/Imm> Vd,Vm
Sm Value,Imm = {1,2,4,8,16}

shrk Shrink <Sm/Imm> Vd,Vm
Sm Value,Imm = {1,2,4,8,16}

exp Expand <Sm/Imm> Vd,Vm
Sm Value,Imm = {1,2,4,8,16}

7. AGU
The AGU instructions move data from memory into register file. Based on the AGU register
indexing.

7.1 Data addressing
Each AGU register contains 3 register BASE,ADDRESS and CONTROL.
The Base and the control registers are map in the special purpose space and can be access with trfs
instruction. While the Address is mapped in the AGU register space. In AGU instruction only the
AGU register is specified and the its control and based register are implicitly used.

Effective address = (Address&Mask+Base)
Address = Address+offset

Table 12: AGU registers

1
5

1
4 13 1

2
1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1 00

Base s/va

a. Scale/Vector

Base Address 0

Address Address 0

Control Offset Mask Res

B A S E

A D D R E S S

A O f fs e tM a s k

7.2 AGU instructions

Table 13: AGU Control
flags

Offset 000 - 0
001 - 2
010 - 4
011 - 8
100 - 16
101 - 32
110 - 64
111 - 128

Reserved N/A

Table 14: Transfer Instructions operands

Operands Operands Description

nill - No Operation

move.b move.b Sd,(An.s)+/-

move.b Vd,(An.s)+/-

move.b Ad,(An.s)+/-

move.b (An.s)+/-,Sn

move.b (An.s)+/-,Ad

- Move byte from scalar memory to scalar reg-
ister
- Move byte from scalar memory expend it and
move it to vector register
- Move Byte from the memory into AGU regis-
ter

- Move register LSB register Sn to scalar mem-
ory

- Move AGU 8-bit LSB to scalar memory

move.w move.w Sd,(An.s)+/-

move.w Ad,(An.s)+/-

move.w (An.s)+/-,Sn

move.w (An.s)+/-,Am

Move 2B from scalar memory to scalar register

Move 2B from the memory into AGU register

- Move register Sn to scalar memory

- Move AGU to scalar memory

move.l move.l Pd,(An.s)+/-

move.l (An.s)+/-,Sm:Sn

- Move 32bit from memory to predication regis-
ter

- Move 2 registers to scalar memory

move.2l move.2l Pd:Pd+1,(An.s)+/- - Move 64bits into two predicators

move.q move.q Vn,(An.s)+/- - Move 64bits from scalar memory into scalar
vector queue

move.v move.v Vd,(An.v)+/-
move.v (An.v)+-,Vm

move.v Sd,(An.v)+/-,Sm

move.v Ad,(An.v)+/-,Sm

move.v Pd,(An.v)+/-

Move from vector memory to vector RF

Move Vector from memory indexed by Scalar
(Sm) into scalar

Move Vector from memory indexed by scalar
(Sm) into AGU

Move Vector LSP into predictor

Table 14: Transfer Instructions operands

Operands Operands Description

Examples

Modes:

3.3.1 16bit+16bit takes 2 cycles; r1,r0 Num1; r3,r2 Num2; r5,r4 Result

(1) add r4,r0,r2

(2) add.c r5,r1,r3

3.3.2 8x16 truncate to 16bits takes 2 cycles as follow:

// r1,r0 Num1; r2 Num2; r5,r4 Result

(1) mul r0,r2,r4

(2) mul.c r1,r2,r5

3.3.3 16x16 multiplication takes 5 cycles as follow:

// r1,r0 Num1; r3,r2 Num2; r7,r6,r5,r4 Result

(1) mul r0,r2,r4

(2) mul.c r1,r2,r5

(3) mull.c r3,r0,r5

(4) mull.c r3,r1,r6

(5) mul.c #0,r1,r7

Appendix A:
SPR memory map

** Extract instruction for scalar???
** Add Two guard bits on the vector allows, 4 additions before saturation
 This might requires a special move that takes all 10bits to scalar.

Table 15: Special purpose register memory map

Address Register Description

0x0 L0_Start Loop0 start register

0x2 L0_Size Loop0 count register

0x4 L0_End Loop0 end register

0x8 L1_Start Loop1 start register

0x10 L1_Size Loop1 count register

0x12 L1_End Loop1 end register

0x20 AGU0_BASE

0x22 AGU0_CNTR

0x24 AGU1_BASE

0x26 AGU1_CNTR

0x28 AGU2_BASE

0x2A AGU2_CNTR

0x2C AGU3_BASE

0x2E AGU3_CNTR

0x100-
0x200

DMA

